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Abstract
A bicycle path is a pair of trajectories inRn, the ‘front’ and ‘back’ tracks, traced
out by the endpoints of a moving line segment of fixed length (the ‘bicycle
frame’) and tangent to the back track. Bicycle geodesics are bicycle paths
whose front track’s length is critical among all bicycle paths connecting two
given placements of the line segment. We write down and study the associated
variational equations, showing that for n⩾ 3 each such geodesic is contained
in a 3-dimensional affine subspace and that the front tracks of these geodesics
form a certain subfamily of Kirchhoff rods, a class of curves introduced in 1859
by Kirchhoff, generalizing the planar elastic curves of Bernoulli and Euler.
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1. Introduction

1.1. Bicycling geodesics

Consider the motion of a directed line segment of unit length in n-dimensional Euclidean space
Rn, n⩾ 2. As the segment moves, its end points trace a pair of trajectories, the front and back
tracks. We consider motions satisfying the no-skid condition: at each moment the line segment
is tangent to the back track. That is, if x(t) and y(t) are the front and back tracks, respectively,
and v(t) := x(t)− y(t) is the direction of the line segment (the ‘bike frame’), then |v(t)|= 1
and y ′(t) is parallel to v(t) for all t.

Such a motion is called a bicycle path. For n= 2 this is the simplest model for bicycle
motion, hence the terminology, see figure 1. A justification of this model is that the rear wheel
of a bicycle is fixed on its frame. The same model describes hatchet planimeters. See [5] for a
survey.

We define the length of such a path as the (ordinary) length of its front track. We ask:
what are the bicycling geodesics? These are paths with critical length among bicycle paths
connecting two given placements of the line segment.

The article [1] answered this question for n= 2. The answer is that the front tracks of bicyc-
ling geodesics are arcs of non-inflectional elastic curves, a well-known class of curves studied
first by Bernoulli (1694) and by Euler (1743).

In the present article we answer this question for general n; it turns out that it is enough
to consider the n= 3 case, and that the front tracks of these bicycle geodesics are Kirchhoff
rods, a class of curves introduced in 1859 by Kirchhoff [7], then studied extensively by many
others. See, e.g. [12, chapter 5] or [8] (our main reference). See figure 2. Let us review this
material briefly.

1.2. Kirchhoff rods

These are curves in R3 which are extrema of the total squared curvature (‘bending energy’)
among curves with fixed end points, total torsion, and length. Accordingly, one defines the
functional

γ 7→
ˆ
γ

(
κ2 +λ1τ +λ2

)
ds,

3573



Nonlinearity 36 (2023) 3572 G Bor et al

Figure 1. A bicycle path: as the line segment (‘bicycle’) moves, its end points trace the
front x(t) (blue) and back y(t) (red) tracks such that the direction v(t) of the line segment
is tangent at each moment to the back track.

Figure 2. A bicycle geodesic inR3. The front track is blue and the back track is red. The
front track is also the trajectory of a charged particle in Killing magnetic field, whose
axis is marked in green.

where λ1,λ2 are Lagrange multipliers, and studies the associated variational equations. The
result is a 4-parameter family of space curves (up to rigid motions), either straight lines or
curves whose curvature κ and torsion τ , as functions of arc length, satisfy

κ ′ ′ = κ

[
2a1 + τ(τ − a2)−

κ2

2

]
, (1)

κ2(2τ − a2) = a3, (2)

where a1,a2,a3 ∈ R. The ordinary differential equation (ODE) (1) admits an ‘energy conser-
vation law’,

(κ ′)2 +
1
4

(
κ2 − 2a1

)2
+κ2(τ − a2)

2 = (a4)
2, (3)

for some a4 ∈ R. See for example [8, section 4]4.

Remark 1.1. Note that equation (1) cannot be replaced with (3), since there are solutions of (2)
and (3) with constant κ,τ which are not solutions of (1) and (2); however, for solutions with
non-vanishing κ ′, equations (1) and (3) are equivalent.

Among Kirchhoff rods, elastic curves are those with a2 = 0. Planar Kirchhoff rods,
i.e. those with τ = 0, are planar elastic curves, satisfying a2 = a3 = 0. See figure 3.

One can use equations (1)–(3) to write a single ODE for u := κ2 of the form (u ′)2 = P(u),
where P is a cubic polynomial. It follows that u, and therefore κ and τ , are elliptic functions
(doubly periodic in the complex domain) so that the curves themselves are quasi-periodic,

4 In [8, section 4] there appear 5 parameters, λ1,λ2,λ3,c, j, but λ3 is superfluous and can be set to λ3 = 1, and the
rest of the parameters are related to ours by λ1 = a1,λ2 = a2,c= a3, j = a4.
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Figure 3. The family of planar elastic curves.

i.e. x(t+T) =M(x(t)), for some T > 0, M ∈ Iso(R3) and all t. The isometry M is called the
monodromy of x(t).

Another useful characterization of Kirchhoff rods is as the trajectories of a charged particle
in a Killing magnetic field; that is, the solutions x(t) of

x ′ ′ = x ′ ×K, where K= (x− x1)×p+ δp (4)

for some fixed p,x1 ∈ R3, δ ∈ R. The vector fieldK is called ‘Killing’, or an ‘infinitesimal iso-
metry’, since it generates screw-like rigid motions about a fixed line, the line passing through
x1 in the direction of p. Note that for δ= 0 and x ′(0)‖p the trajectory is a planar elastica.
See [3, 4].

1.3. The main result

Theorem 1. (a) The front and back tracks of each bicycling geodesic in Rn, n⩾ 3, are con-
tained in a 3-dimensional affine subspace.

(b) Front tracks of bicycling geodesics inR3 are either straight lines or curves whose curvature
and torsion functions satisfy

κ′′ = κ

[
τ(τ − b)+

1+ a2 −κ2

2

]
,

κ2(2τ − b) = b(a2 − 1),

and such that

(κ′)2 +
1
4

(
1+ a2 −κ2

)2
+κ2(τ − b)2 = a2 + b2,

where a,b ∈ R. These curves comprise a 2-parameter subfamily of Kirchhoff rods, solu-
tions to equations (1)–(3), with parameter values

a1 =
1+ a2

2
, a2 = b, a3 = b(a2 − 1), a4 =

√
a2 + b2. (5)

(c) A unit speed bicycle path (x(t),y(t)) in R3, that is,

|x′(t)|= 1, |x(t)− y(t)|= 1, y′(t)‖(x(t)− y(t)) for all t,
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Figure 4. A bicycling geodesic with front track (blue) of constant torsion (the curvature
function is that of a planar inflectional elastic curve). Points with vanishing κ (inflection
points) are marked with light marks, maxima and minima of κ are marked with dark
marks. The back track is red. The green axis is the symmetry axis of the associated
monodromy and the magnetic field K of equation (4).

with initial conditions x0,x ′
0,y0 ∈ R3, is a bicycling geodesic if and only if the front track

x(t) is either a unit circle with y(t) fixed at its centre, or a solution to equation (4) with

p 6= 0, v0 · (x′0 −p) = 0, x1 = y0 +
(x′0 × v0)×p

|p|2
, δ =

(x′0 × v0) ·p
|p|2

.

The parameters a,b of the previous item are given by

a2 + b2 = |p|2, b=−(x′0 × v0) ·p.

1.4. Additional results

A detailed description of bicycling geodesic involves the following results proved in section 3:

• Front tracks of planar geodesics are the solutions of theorem 1(b) with b= 0, or unit circles
(a= 0). As shown in [1], these front tracks are non-inflectional elasticae, see proposition
3.5(a) and figure 3.

• Solutions with |a|= 1 correspond to front tracks with constant torsion τ = b/2, and whose
curvature is that of planar inflectional elasticae. See proposition 3.5(b) and figure 4.

• Each non-planar geodesic front track comes in a ‘fixed size’. That is, no two such curves are
related by a similarity transformation. This is unlike the planar case, where each front track,
except circle, straight line and Euler soliton, come in two ‘sizes’, ‘wide’ and ‘narrow’, see
[1, section 4]. The closest thing to it, for non-planar geodesic front tracks, is a ‘torsion-shift-
plus-rescaling’ transformation, see proposition 3.10.

• The only globally minimizing bicycle geodesics are the planar minimizers, i.e. those
geodesics whose front tracks are either a line or an Euler’s soliton. See proposition 3.18.

• There are no closed bicycling geodesics except those with circular front tracks. See propos-
ition 3.6.

• Bicycle geodesics, like all Kirchhoff rods, can be expressed explicitly in terms of elliptic
functions. See the appendix.

• Back tracks of bicycling geodesic are determined by their front tracks. (Exception: linear
front tracks.) See proposition 3.7.
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• Given a rear bicycle track, bicycle correspondence between front tracks is the result of revers-
ing the direction of the bicycle frame, see [2]. Bicycle correspondence defines an isometric
involution on the bicycle configuration space, acting on the front and back tracks of geodesics
by an isometry whose second iteration is the monodromy of the tracks involved. See pro-
position 3.14.

2. Proof of theorem 1

2.1. A sub-Riemannian reformulation

We start by reformulating bicycle paths and geodesics in the language of sub-Riemannian
geometry. Our main reference here is chapter 5 of the book [9].

Denote by v := x− y ∈ Sn−1 the frame direction and by

Q := {(x,v) | |v|= 1}= Rn × Sn−1

the bicycling configuration space. The no-skid condition defines an n-distribution D on Q,
that is, a rank n sub-bundle D ⊂ TQ, so that bicycle paths are curves in Q tangent everywhere
to D .

Lemma 2.1. D consists of vectors (x ′,v ′) ∈ T(x,v)Q satisfying

v ′ = x ′ − (x ′ · v)v. (6)

The proof appeared before, e.g. in proposition 2.1 of [2], or lemma 4.1 of [1]. Since the
proof is quite short, and our notation here differs slightly from that of these references, we
reproduce it here.

Proof. Let (x(t),v(t)) be a path in Q and x ′
∥ := (x ′ · v)v the orthogonal projection of the front

track velocity on the frame direction. The no-skid condition is then y ′ = x ′
∥. From v= x− y

it follows that y ′ = x ′
∥ is equivalent to v ′ = x ′ − x ′

∥, which is equation (6).

The sub-Riemannian length of a vector (x ′,v ′) ∈ D is, by definition, the length |x ′| of its
projection to Rn. This defines a sub-Riemannian structure (Q,D ,g), where g is a positive def-
inite quadratic form onD , the restriction toD of the pull-back toQ of the standard Riemannian
metric on Rn under the ‘front wheel’ projection Q→ Rn, (x,v) 7→ x. In this language, bicycle
geodesics are the geodesics of (Q,D ,g), that is, curves inQ tangent toD whose length between
any two fixed points on them is critical among curves in Q tangent to D whose end points are
these fixed points. In fact, as in the Riemannian case, if the geodesic arc is sufficiently short
then it is minimizing between its endpoints. See theorem 1.14 on page 9 of [9].

Now in general, sub-Riemannian geodesics are either normal or abnormal. Normal
geodesics always exist and are given by solutions of an analogue of the usual geodesic
equations in Riemannian geometry. We shall next derive these equations for bicycle geodesics
in lemma 2.4 below. Abnormal sub-Riemannian geodesics do not have a Riemannian analogue
and are harder to pin down.We shall later show, in section 2.3, that abnormal bicycle geodesics
in fact do not exist, i.e. all bicycle geodesics satisfy the geodesic equations, see corollary 2.20.

2.2. The bicycle geodesics equations

The (normal) geodesic equations on a sub-Riemannian manifold (Q,D ,g) are derived via a
Hamiltonian formalism, as follows.

3577



Nonlinearity 36 (2023) 3572 G Bor et al

One fixes an orthonormal frame ξi for D and let Pi : T∗Q→ R be the associated fibre-wise
linear momentum functions,

Pi(α) := α(ξi), α ∈ T∗Q.

One forms the HamiltonianH := (1/2)
∑

i(Pi)
2 on T∗Q and the associated Hamiltonian vector

fieldX (with respect to the standard symplectic structure on T∗Q). The sub-Riemannian normal
geodesics are then the projection to Q of the integral curves of X. See definition 1.13 on page
8 of [9]. We shall now follow this recipe in our case.

Let ∂xi be the standard basis in Rn and n=
∑n

j=1 vj∂vj be the unit normal along Sn−1 ⊂ Rn.
Then, by lemma 2.1, the vectors

ξi := ∂xi + ∂vi − vin, i= 1, . . . ,n, (7)

form an orthonormal basis of D .
Using the Euclidean structure on Rn we identify

T∗(Rn ×Rn) = T(Rn ×Rn), T∗Q= TQ,

so that T∗Q⊂ T∗(Rn ×Rn) is a symplectic submanifold. Let pi,ri be the momenta coordin-
ates on T∗(Rn ×Rn) dual to xi,vi; that is, if α ∈ T∗(Rn ×Rn) then pi(α) := α(∂xi), ri(α) :=
α(∂vi). We shall use the same letters xi,vi,pi,ri to denote the restriction of these functions to
T∗Q.
Notation. We shall use a vector notation throughout:

a= (a1, . . . ,an), a ·b=
n∑

i=1

aibi, a∂x =
n∑

i=1

ai∂xi ,

ω = dx∧ dp+ dv∧ dr=
n∑

i=1

dxi ∧ dpi + dvi ∧ dri,

etc.

Lemma 2.2. T∗Q⊂ T∗(Rn ×Rn) is given, in the coordinates x,v,p,r, by

v · v= 1, r · v= 0.

Proof. Let (x,v) ∈ Q, so that v · v= 1, and

α= pdx+ rdv ∈ T∗
(x,v)(R

n ×Rn).

Then α ∈ T∗Q if and only if the corresponding vector,

X= p∂x + r∂v ∈ T(x,v)(Rn ×Rn),

satisfies X(v · v) = 0. That is, 0= vdv(X) = r · v= 0.

Lemma 2.3. Pi = pi + ri on T∗Q. Thus

H=
1
2
|p+ r|2 = 1

2

n∑
i=1

(pi + ri)
2. (8)

Proof. Let α= pdx+ rdv ∈ T∗Q. By equation (7), Pi(α) := α(ξi) = pi + ri + vi (v · r). By
the previous lemma, the last term vanishes.
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Lemma 2.4. The Hamiltonian equations on T∗Q, corresponding to the Hamiltonian (8), are

x ′ = p+ r,

v ′ = p+ r− (v ·p)v,
p ′ = 0,

r ′ = (v ·p)r− [r · (r+p)]v,

(9)

with v · v= 1, r · v= 0.

Proof. Let X be the Hamiltonian vector field on T∗Q,

X= x′∂x + v′∂v +p′∂p + r′∂r,

where x ′,v ′,p ′,r ′ are unknown vectors. We have

dH= iXω, (10)

where ω = dx∧ dp+ dv∧ dr is the symplectic form.
Now

iXω = x′dp+ v′dr−p′dx− r′dv

and, by equation (8),

dH= (p+ r)(dp+ dr).

Note that equation (10) is an equality between 1-forms on T∗Q, the restrictions of both sides
of (10) to T∗Q. By lemma 2.2, the kernel of this restriction is spanned by vdv,rdv+ vdr. Thus,
equation (10) amounts to the existence of functions λ,µ on T∗Q such that

(p+ r)(dp+ dr) = x′dp+ v′dr−p′dx− r′dv

+λvdv+µ(rdv+ vdr).

Equating coefficients, we obtain

x ′ = p+ r, v ′ = p+ r−µv, p ′ = 0, r ′ = λv+µr. (11)

Furthermore, since X is a vector field on T∗Q, vdv,rdv+ vdr vanish on X, hence

v · v′ = 0, v′ · r+ v · r′ = 0.

Dotting the second equation of (11) with v, one obtains

0= v · v′ = v · (p+ r−µv) = v ·p−µ,

hence µ= v ·p. Dotting the 4th equation of (11) with v one obtains v · r ′ = v · (λv+µr) = λ,
hence

λ=−v′ · r=−(p+ r−µv) · r=−(p+ r) · r.

Substituting these values of λ,µ in equation (11), we obtain equation (9).

Lemma 2.5. The tri-vector p∧ v∧ x ′ is constant along solutions of equation (9).
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Proof. Using equation (9),

(p∧ v∧ x′)′ = (p∧ v∧ r)′ = p∧ v′ ∧ r+p∧ v∧ r′

=−(v ·p)p∧ v∧ r+(v ·p)p∧ v∧ r= 0,

as needed.

Corollary 2.6 (part (a) of theorem 1). For any normal bicycling geodesic (projection to Q of
a solution of equation (9)), the front and back tracks x(t),v(t) are contained in the affine space
passing through x0, parallel to the linear subspace spanned by x ′

0,v0,p.

Remark 2.7. One can give also a geometric argument for corollary 2.6. Let (x(t),y(t)), t ∈
[t0, t1], be a unique minimizing geodesic (we assume that the interval [t0, t1] is small enough).
Generically, the points x(t0),y(t0),x(t1),y(t1) span a 3-dimensional affine space, and the
reflection in this subspace induces an isometry of the configuration space Q. If the geodesic is
not contained in this 3-space, then its reflection is another minimizing geodesic, contradicting
its uniqueness.

Another consequence of equation (9) is

Corollary 2.8. (a) x ′ · x ′ = 2H is constant along solutions of equation (9).
(b) If (x(t),v(t),p,r(t)) is a solution then so is (x(λt),v(λt),λp,λr(λt) for all λ 6= 0.

We now proceed to proving parts (b), (c) of theorem 1. By the last corollaries, we shall
assume henceforth that n= 3 and |x ′(t)|= 1 (arc length parametrisation of the front track).

Lemma 2.9. For any solution of equation (9):

(i) b := p · (v× x ′) is constant.
(ii) |b|⩽ |p|, with equality if and only if the front track is a unit circle, with the back wheel

staying fixed at the centre of the circle.
(iii) If a geodesic has a front track which is a straight line, x ′ ′ = 0, then b= 0, |p|= 1. (The

converse is not true, because the Euler soliton as the front track also corresponds to these
values, see proposition 3.5 below).

(iv) Equation (9) are equivalent to

T ′ = T×K, v ′ = T− (v ·p)v, (12)

where

T= x′, K= r× v= (T−p)× v, p= const, |T|= |v|= 1, r · v= 0.

Proof. (i) Follows from lemma 2.5.
(ii) By the Cauchy–Schwartz inequality, |b|= |p · (v× x ′)|⩽ |p||v||x ′|= |p|, with equality

if either p= 0 or p 6= 0 and x ′,v,p are pairwise orthogonal. In the first case x ′ = r, hence
is perpendicular to v, and in both cases, setting T= x ′, equation (9) give T ′ ′ =−T, v=
−T ′, and claim (ii) follows.

(iii) The first equation of (9) implies that r= x ′ −p= const, thus, by the 4th equation,
(v ·p)r= (r · x ′)v. Dotting with r, we get (v ·p)|r|2 = 0, so either v ·p= 0 or r= 0.
If v ·p= 0 then by the 3rd equation, v ′ = x ′, so v= v0 + tx ′, which is impossible
since |v|= |x ′|= 1. Hence r= 0, so p= x ′, which implies that b= p · (v× x ′) =
x ′ · (v× x ′) = 0 and |p|= |x ′|= 1, as needed.
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Figure 5. Notation of proposition 2.11.

(iv) The 3rd equation of (9) gives T ′ = (v ·p)r− (r ·T)v. By the vector identity

a× (b× c) = (a · c)b− (a ·b)c, (13)

this is equivalent to T ′ = T× (r× v). The second equation of (12) is immediate from the
first and second equation of (9).

Remark 2.10. The front track of a bicycling geodesic with p= 0 is thus a unit circle with the
back track fixed at its centre. From here on, unless otherwise mentioned, we will only consider
bicycling geodesics with p 6= 0.

Proposition 2.11 (part (c) of theorem 1). A unit speed bicycle path (x(t),v(t)) in R3 with
initial conditions x0,x ′

0,v0 is a bicycling geodesic (a solution to equation (12)) with p 6= 0 if
and only if x(t) is a solution to

x ′ ′ = x ′ ×K, where K= (x− x1)×p+ δp, (14)

and

v0 · (x′0 −p) = 0, x1 = y0 +
(x′0 × v0)×p

|p|2
, δ =

(x′0 × v0) ·p
|p|2

=− b
|p|2

,

where y0 = x0 − v0 is the initial back track position. See figure 5.

Proof. From equations (12),

x ′ ′ = x ′ ×K, (15)

where K := r× v and r= x ′ −p. By equation (9),

K ′ = r ′ × v+ r× v ′ = (v ·p)r× v+ r× [p− (v ·p)v] = r×p

= (x×p) ′.
(16)

Consequently,

K− x×p= r0 × v0 − x0 ×p,

or

K= (x− y0)×p+ x ′
0 × v0. (17)
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Since p 6= 0, we may decompose orthogonally

x ′
0 × v0 = p× a+ δp, (18)

for some a⊥ p and δ ∈ R. Then

(x′0 × v0)×p= |p|2a, (x′0 × v0) ·p= |p|2δ,

hence

a=
(x ′

0 × v0)×p
|p|2

, δ =
(x ′

0 × v0) ·p
|p|2

=− b
|p|2

. (19)

Equation (14) now follow from (15)–(19) by taking x1 := y0 + a.
Conversely, the magnetic field K and initial conditions for its trajectory are defined using

only the initial conditions for the bicycling geodesic’s front track. Since they satisfy the same
equations of motion (equation (12)), such magnetic field trajectories coincide with the bicyc-
ling geodesics.

Let T,N,B be the Frenet–Serret frame along a nonlinear front track x(t), and κ,τ the
curvature and torsion functions, respectively. That is,

x ′ = T, T ′ = κN, N ′ =−κT+ τB, B ′ =−τN, (20)

where B= T×N (the Frenet–Serret equations).

Remark 2.12. The Frenet–Serret frame is usually defined via formulas (20) along a regular
curve x(t) in R3, parametrized by arc length, with non-vanishing acceleration x ′ ′, by adding
the condition κ> 0. If one does not add the last condition, then the frame is well defined only
up to the involution

(T,N,B,κ,τ) 7→ (T,−N,−B,−κ,τ).

For analytic curves, as is our case (the right hand side of equation (9) are quadratic polynomi-
als), x ′ ′ either vanishes identically, in which case it is a line, or vanishes at isolated points, the
inflection points of the curve.

In the latter case, by looking at the Taylor series of x(t) around an inflection point, say x(0),
one sees that that the Frenet–Serret frame extends analytically to these points, so equation (20)
still hold, but κ may change sign at the inflection point. For example, if x ′ ′ ′(0) 6= 0, then
κ ′(0) 6= 0.

That is, any analytic nonlinear regular curve x(t) admits exactly two Frenet–Serret frames,
(T,N,B,κ,τ) and (T,−N,−B,−κ,τ), both satisfying the Frenet–Serret equations (20), but
if the κ has variable sign there is no natural way to choose one of the frames. This situation
actually occurs for some of the solutions of equation (9), as we shall see later (the constant
torsion solutions, see proposition 3.5 below).

In summary, in what follows, whenever we mention ‘the Frenet–Serret frame’, we impli-
citly refer to either choice of these frames in case κ has a variable sign. One can check
that all equations involving the frame are invariant under the involution (T,N,B,κ,τ) 7→
(T,−N,−B,−κ,τ). For more details on inflection points of analytic space curves see [11],
or pages 41–43 of [6].

Lemma 2.13. For any nonlinear geodesic front track,

p=
1+ a2 −κ2

2
T−κ ′N−κ(τ − b)B= const., (21)

where a2 := |p|2 − b2 (see lemma 2.9).
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Proof. We compute each of the coefficients p ·T,p ·N,p ·B. Recall from (12) and (16) that
for K := r× v we have

T ′ = T×K, K ′ = T×p. (22)

Now, since r= T−p and b= p · (v×T), we have T ·K= T · (r× v) =−b. Using again
the vector identity (13),

κB= T×T ′ = T× (T×K) =−bT−K. (23)

It follows that |K|2 = b2 +κ2, and since r · v= 0, |v|= 1, we have:

b2 +κ2 = |K|2 = |r|2 = |T−p|2 = 1− 2T ·p+ |p|2,

yielding the expression for the first component, T ·p.
For the remaining components, using equations (22) and (13), one has

T′′ = (T×K)′ = (T×K)×K+T× (T×p)

=
(
T ·p− |K|2

)
T− bK−p.

On the other hand, by the Frenet–Serret equations,

T′′ =−κ2T+κ′N+κτB.

Dotting these two expressions for T ′ ′ with N, we obtain κ ′ =−bK ·N−p ·N, while
from (23) we have K ·N= 0, so that p ·N=−κ ′, as needed.

Dotting the two expressions forT ′ ′ withBwe obtainκτ =−bK ·B−p ·B, while from (23)
we have K ·B=−κ, so that p ·B=−κ(τ − b).

Now we prove the second statement of theorem 1.

Proposition 2.14. Nonlinear geodesic front tracks inR3 (solutions to equation (9)) are curves
whose curvature and torsion functions satisfy

κ ′ ′ = κ

(
τ(τ − b)+

1+ a2 −κ2

2

)
, (24)

κ2(2τ − b) = b(a2 − 1), (25)

such that

(κ ′)2 +
1
4

(
1+ a2 −κ2

)2
+κ2(τ − b)2 = a2 + b2, (26)

where a,b ∈ R.

Proof. Equation (26) is obtained by taking the norm square of both sides of (21). Equation (25)
is obtained by dotting (23) with p,

b=−K ·p= bT ·p+κB ·p,

then substituting the values of T ·p, B ·p from equation (21). Equation (24) follows by
differentiating (21):

0=

(
−κ′′ +κ

[
τ(τ − b)+

1+ a2 −κ2

2

])
N−

(
κ′τ + [κ(τ − b)]′

)
B.

The vanishing of the N component gives equation (24).
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Note that the vanishing of the B component in the last equation does not give new inform-
ation: multiplying the B component by −2κ, one obtains the derivative of κ2(2τ − b), which
vanishes by equation (25).

2.3. Bicycle geodesics are normal

Here we show that all bicycle geodesics in Q= Rn × Sn−1 are normal, that is, the projections
to Q of solutions to equation (9). Our main reference here is section 5.3 of [9].

For a general sub-Riemannian structure (Q,D ,g), abnormal geodesics are singular curves
of (Q,D) (the definition of singular curves does not involve the sub-Riemannian metric g, see
below). The converse is not true: a singular geodesic may happen to be normal [9, section
5.3.3]. Thus, in order to show that all bicycle geodesics are normal, we will first find the
singular curves of (Q,D), then show that all geodesics among them are normal, i.e. can be
lifted to parametrized curves in T∗Q satisfying equation (9).

Singular curves of (Q,D) are defined by considering first the annihilatorD0 ⊂ T∗Q, that is,
the set of covectors vanishing on D . A characteristic curve of D0 is a curve in D0 which does
not intersect the zero section of D0 → Q and whose tangent is in the kernel of the restriction
of the canonical symplectic form of T∗Q to D0. A singular curve of (Q,D) is the projection
to Q of a characteristic curve of D0.

The case n= 2 is special, since in this case D , defined by the non-skid condition (6), is
contact, which implies that D0 ⊂ T∗Q is symplectic (see [1, section 4.1] and the example at
the top of page 59 of [9]). Hence there are no characteristics and singular curves for n= 2 so
all geodesics are automatically normal. We thus assume henceforth that n> 2.

Proposition 2.15. Singular bicycle paths consist of curves (x(t),v(t)) in Q in which the back
wheel x(t)− v(t) ∈ Rn is fixed and v(t) moves in Sn−1 perpendicular to some fixed p 6= 0,
p · v(t) = 0.

Proof. We first determine D0 ⊂ T∗Q. Recall from lemma 2.2 that T∗Q is given in the canon-
ical coordinates x,v,p,r on T∗(Rn ×Rn) by v · v= 1, r · v= 0.

Lemma 2.16. D0 is a (3n− 2)-dimensional submanifold of T∗Q, given by v · v= 1,
r · v= 0, r+p= 0.

Proof. Let

α= pdx+ rdv ∈ T∗Q, X= x′∂x + v′∂v ∈ D .

By lemma 2.1, v ′ = x ′ − (x ′ · v)v. Thus, using that r · v= 0 on T∗Q, α ∈ D0 if and only if

0= α(X) = p · x′ + r · [x′ − (x′ · v)v)] = (p+ r) · x′

for all x ′ ∈ Rn. That is, p+ r= 0, as claimed.
To prove that dim(D0) = 3n− 2, using the implicit function theorem, we show that

(1,0,0) ∈ R×R×Rn is a regular value of

(x,v,p,r) 7→ (|v|2,r · v,r+p).

That is, for a fixed (x,v,p,r) ∈ D0, a,b ∈ R, c ∈ Rn, one needs to solve

v · v′ = a, r · v′ + r′ · v= b, r′ +p′ = c

for v ′,p ′,r ′ ∈ Rn. These equations are solved by v ′ = av,r ′ = bv,p ′ = c− bv.
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Lemma 2.17.

ω := dx∧ dp+ dv∧ dr≡ (dx− dv)∧ dp 6≡ 0 mod D0,

where equivalence of forms mod D0 means the equality of their restriction to D0.

Proof. The first congruence follows from the equality r+p= 0 on D0, proved in the last
lemma. For n> 2 we have, by the same lemma,

dim(D0) = 3n− 2> 2n=
1
2
dim [T∗(Rn ×Rn)] ,

so the restriction to D0 of ω (the canonical symplectic form of T∗(Rn ×Rn)) is non-vanishing.

Next let

Y= x′∂x + v′∂v +p′∂p + r′∂r

be a vector tangent to D0.

Lemma 2.18. Y is in the kernel of the restriction of ω to D0, iYω ≡ 0 mod D0, if and only if
p ′ = r ′ = x ′ − v ′ = 0.

Proof. By lemma 2.16,

D0 = {v · v= 1,r · v= 0,p+ r= 0},

hence tangency of Y to D0 amounts to

v · v′ = r · v′ + v · r′ = 0, p′ + r′ = 0,

thus

Y= x′∂x + v′∂v +p′(∂p − ∂r).

It follows that

iYω ≡ iY [(dx− dv)∧ dp] = (x′ − v′)dp−p′(dx− dv) mod D0.

By lemma 2.17, dp∧ (dx− dv) 6≡ 0 mod D0. It follows that the restrictions of dp,dx− dv to
D0 are linearly independent, hence the vanishing of iYω mod D0 is equivalent to the vanishing
of x ′ − v ′,p ′. Since r ′ =−p ′ for vectors tangent to D0, r ′ vanishes as well.

We can now complete the proof of proposition 2.15. From the last lemma follows that
characteristics of D0 are curves (x(t),v(t),p(t),r(t)) where the back track x(t)− v(t) is fixed,
|v(t)|= 1, r(t) · v(t) = 0 and p(t) =−r(t) is a non-zero constant vector. This projects to the
stated curve in Q.

Remark 2.19. Proposition 2.15 is a special case of the following. Let M be an n-dimensional
manifold and Q= S(TM) the spherized tangent bundle, consisting of pairs (y, ℓ), where y ∈M
and ℓ is an oriented 1-dimensional subspace of TyM. Define a rank n distribution D ⊂ TQ
whose integral curves are given by trajectories (y(t), ℓ(t)) such that ẏ(t) ∈ ℓ(t) for all t. (One can
think ofQ as the configuration space for bicycling onM, where y is the back wheel placement,
ℓ is the frame direction and D is the no-skid condition.) Note that the trajectories for which the
back wheel is fixed, y(t) = const., satisfy this condition trivially. Singular curves of (Q,D) are
then given by trajectories (y(t), ℓ(t)) such that y(t) = y is fixed and ℓ(t) varies in some fixed
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codimension 1 subspace of TyM. Proposition 2.15 is the case of M= Rn and actually implies
the more general case since it is a local statement.

Corollary 2.20. All bicycle geodesics are normal.

Proof. By proposition 2.15, the length of a singular bicycle path (x(t),v(t)) is given by the
length of the curve traced by v(t) on Sn−1. This length is critical when v(t) traces a spherical
geodesic, i.e. an arc of a great circle on Sn−1 (the intersection of a 2-dimensional subspace of
Rn with Sn−1). To show that this singular bicycle geodesic is normal we first reparametrize
it by arc length, |v ′(t)|= 1, then lift it to a solution of equation (9). Let p 6= 0 be a vector
perpendicular to the 2-plane spanned by v(t) and r(t) := v ′(t)−p. Then one can easily check
that this defines a solution to equation (9). (Note that this lift is not a characteristic of D0, since
for a characteristic r=−p is constant.)

3. Additional results

3.1. More about geodesic front tracks

In theorem 1we described front tracks of bicycling geodesics as a subfamily of Kirchhoff rods,
parametrized by the two parameters a,b in equations (24)–(26). Herewe givemore information
on these curves.

Clearly, since a appears in equations (24)–(26) only through a2, it is enough to restrict to
a⩾ 0. Regarding b, we observe the following.

Lemma 3.1. Reflection with respect to a plane or a point in R3 transforms a bicyc-
ling geodesic to another bicycling geodesic, with (κ,τ) 7→ (κ,−τ) and (a,b) 7→ (a,−b) in
equations (24)–(26).

Proof. The transformation of κ,τ follows from the Frenet–Serret equation (20). The trans-
formation of (a, b) then follows from equations (24)–(26).

Therefore in what follows we will consider only the parameter values a,b⩾ 0. See figure 6.

Lemma 3.2. All values of the parameters a,b⩾ 0 in equations (24)–(26) occur among non-
linear front tracks of bicycling geodesics.

Proof. Let v0 := (1,0,0), x ′
0 := (0,1,0), p := (0,a,b). Then v0 · (x ′

0 −p) = 0, so these are
admissible initial conditions for equation (14). The solution is a bicycling geodesic with p ·
(v0 × x ′

0) = b, |p|2 = a2 + b2, as needed.

Proposition 3.3. The curvature and torsion of nonlinear geodesic front tracks, except for the
Euler soliton (a= 1,b= 0), are periodic elliptic functions, varying in the following ranges
(note the ‘doubling discontinuity’ of the range of κ at a= 1):

(i) For 0⩽ a< 1 : − ab
1+a ⩽ τ ⩽ ab

1−a , 1− a⩽ κ⩽ 1+ a.

(ii) For a> 1 : ab
1−a ⩽ τ ⩽ − ab

1+a , a− 1⩽ κ⩽ a+ 1.
(iii) For a= 1 : τ = b/2, −2⩽ κ⩽ 2.

Proof. We use equation (25) to eliminate τ from equation (26). Then, setting u := κ2, we get

(u ′)2 = P(u), (27)
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Figure 6. The parameter space of bicycle geodesics.

Figure 7. Phase portrait of equation (27), for a= 0.5,b= 1 (inner oval), a= 1,b= 1
(outer oval).

where

P(u) = (u+ b2)
[
(1+ a)2 − u

][
u− (1− a)2

]
.

Equation (27) defines an oval in the (u,u ′) right half plane u⩾ 0, an integral curve of the vector
field u ′∂u +

1
2
dP
du∂u ′ . This vector filed does not vanish along the oval, since P has no multiple

roots for a,b> 0 (except for a= 1,b= 0, the Euler soliton, see below). See figure 7.
Consequently, the phase point of equation (27) moves clockwise along this closed oval, so

that u oscillates periodically between the two non-negative roots (1± a)2 of P(u). For a 6= 1,
since u= κ2 ⩾ (1− a)2 > 0, this gives the claimed range of κ.

For a= 1 one needs to be more careful. See the outer oval of figure 7. The range of u= κ2 is
[0,4], so κ traverses the range [0,2] as the phase point (u,u ′) goes once around the oval, starting
and ending at u= u ′ = 0. Now u= 0 implies κ= 0, an inflection point of the front track, see
remark 2.12. By equation (26), at this point (κ ′)2 = b2 > 0, so κ changes sign. Going once
more around the oval, κ now traverses the range [−2,0].
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The range of τ is obtained from that of κ via equation (25). For example, when a< 1, we
have κ2(2τ − b) = b(a2 − 1)< 0, so that 2τ − b< 0 and

(1+ a)2(2τ + b)⩽ b(1− a2)⩽ (1− a)2(2τ + b)

since (1− a)2 ⩽ κ2 ⩽ (1+ a)2. Rearranging, we find ab
1−a ⩽ τ ⩽− ab

1+a . The cases a> 1 or
a= 1 are similar.

Since P(u) is cubic in u, the solutions of (27) are elliptic functions (doubly periodic in the
complex domain) and so are κ(t) and τ(t). See the appendix for explicit formulas.

Corollary 3.4. (a) Nonlinear front tracks with constant curvature are unit circles (κ= 1,
a= 0).

(b) Nonlinear front tracks with constant torsion τ 6= 0 correspond to a= 1, b= 2τ .
(c) Front tracks with a> 1 have nowhere vanishing torsion, while those with 0< a< 1 have

torsion of mixed signs. In both cases the curvature is non-vanishing (positive).
(d) Front tracks with a= 1,b> 0 (constant non-vanishing torsion) have curvature of mixed

sign.
(e) Geodesic front tracks which are elastic curves (a2 = 0 in equations (1) and (2)) are planar

non-inflectional elasticae (b= 0), as in proposition 3.5(a) below. See figure 3.

All these statements follow immediately from proposition 3.3.

Proposition 3.5. (a) Nonlinear planar front tracks (τ = 0) are non-inflectional elasticae
(b= 0), as in [1]. The parameter values of the Euler soliton coincide with those of the
straight line (a= 1, b= 0, see lemma 2.9(iii)). The plane of the motion is parallel to p.

(b) The curvature of non-planar front tracks with constant torsion (a= 1,b> 0) is that of
inflectional planar elasticae.

Proof. (a) By proposition 3.3, τ = 0 occurs if and only if a= 0 or b= 0, and a= 0 corresponds
to unit circles. If b= 0 then equation (26) becomes

(κ′)2 +
1
4

(
1+ a2 −κ2

)2
= a2,

which is the equation for non-inflectional elasticae appearing as planar geodesic front
track, see [1, proposition 4.3]. Among these, the Euler soliton corresponds to a= 1. The
statement about the plane of the motion follows from formula (21).

(b) If τ is constant and non-vanishing then, by proposition 3.3, b= 2τ and a= 1.
Equations (24) and (26) then become

κ ′ ′ +
1
2
κ3 +Aκ= 0, (κ ′)2 +

(
κ2

2
+A

)2

= A2 + b2, (28)

where

A=
b2

4
− 1.

For b> 0 these are equations for the curvature of inflectional planar elasticae. See for
example [1, section 3.1].

3588



Nonlinearity 36 (2023) 3572 G Bor et al

Figure 8. Period doubling of the curvature of geodesic front tracks at parameter value
a= 1 (constant torsion). The figure shows a plot of the curvature κ(t) of the front track
over 2 periods of κ2, for various values of a, at fixed b= 1. Blue: a< 1. Red: a> 1.
Black: a= 1.

Proposition 3.6. The only closed bicycling geodesics are those whose front tracks are unit
circles (a= 0).

Proof. By the second equation of (9),

(p · v) ′ = p · [x ′ − (p · v)v] = (p · x) ′ − (p · v)2. (29)

Integrating this over a period,
´
(p · v)2 = 0, so p · v= 0.

It also follows from (29) that p · x ′ = (p · v) ′ +(p · v)2 = 0, and x ′ · v= (p+ r) · v= p ·
v= 0. Thus p,v,x ′ are pairwise orthogonal. It follows that

b2 = |p · (v× x′)|2 = |p|2|v|2|x|2 = |p|2 = a2 + b2,

hence a= 0, and by corollary 3.4(a) we have a unit circle.

3.2. Period doubling

Let us consider a geodesic front track with parameter values (a,b) 6= (1,0) (all cases, except
a straight line and Euler’s soliton).

Denote the period of κ2 by T. Using equation (27), one can write it explicitly:

T= 2
ˆ (1+a)2

(1−a)2

du√
(u+ b2) [(1+ a)2 − u] [u− (1− a)2]

.

(In the appendix we express this integral using standard elliptic integrals.) Clearly, T(a,b) is
continuous in a,b> 0 (it is even analytic).

For a 6= 1, one has κ2 ⩾ (1− a)2 > 0, hence T(a,b) is also the period of κ> 0. However,
for a= 1, as mentioned during the proof of proposition 3.3, there is a point along the front
track with κ2 = 0, an inflection point, where x ′ ′ = 0. See the outer oval of figure 7.

This is exactly the case mentioned in remark 2.12. Furthermore, equation (26) implies that
at this point (κ ′)2 = b2 > 0, so κ changes sign as x crosses this inflection point. It is not until x
reaches the next inflection point, that κ completes a full period. Thus, at a= 1 there is a period
doubling phenomenon of the front track’s curvature. See figure 8.
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3.3. Back tracks

We have focused so far on describing the front tracks of bicycling geodesics. In general, given
a front track (a curve in R3), there is an S2-worth of associated back tracks satisfying the no-
skid condition, given by the initial frame position at some point along the front track. For a
linear front track, any back track (a tractrix) will complete it to a bicycling geodesic.

But this is an exception. The next proposition states that back tracks of all other bicycling
geodesics are determined uniquely by their front tracks.

Proposition 3.7. Consider a nonlinear geodesic front track x(t), parametrized by arc length.
Then at a point of the front track with maximum curvature value, where κ= 1+ a (see pro-
position 3.3), the bicycle frame v is perpendicular to the front track and anti-aligned with the
acceleration vector:

v=− x ′ ′

1+ a
. (30)

Proof. Let F := v · x ′, G := p · x ′. Using equation (9) and r · v= 0, one has

G ′ = p · r ′ = p · [(v ·p)r− (r · x ′)v] = F
(
2G− |p|2 − 1

)
. (31)

Dotting equation (21) with T= x ′, we get

2G= 1+ a2 −κ2, (32)

whose derivative is

G ′ =−κκ ′. (33)

We now calculate at a maximum point of κ, where κ= 1+ a and κ ′ = 0. By
equations (32)–(33), G=−a and G ′ = 0. By equation (31),

0= F[−2a− (a2 + b2)− 1] =−F[(1+ a)2 + b2],

hence F= v · x ′ = 0. Then by equation (9),

v ·p= v · (x′ − r) = v · x′ − v · r= 0

and

r · x′ = (x′ −p) · x′ = 1−G= 1+ a,

so

x′′ = r′ = (G− 1)v=−(1+ a)v,

as needed.

Remark 3.8. A similar argument shows that v is aligned (a> 1) or anti-aligned (a⩽ 1 )
with x ′ ′ also at points of minimum curvature. These are the points with κ= |1− a|, where
(a− 1)v= x ′ ′, for a 6= 1 or κ=−2 for a= 1, where 2v=−x ′ ′.

Another notable case is that of an inflection point, where κ= 0, occurring for a= 1 half
way between adjacent maxima and minima of κ. See remark 2.12. At such a point, x ′ ′ = 0
but x ′ ′ ′ 6= 0. The Frenet–Serret frame then extends analytically to the inflection point via
N=±x ′ ′ ′/|x ′ ′ ′|, B= T×N, and v is aligned with ±B.
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3.4. Rescaling bicycling geodesics, with a torsion shift

Kirchhoff rods (solutions to equations (1)–(3)) comprise—up to isometries—a 4-parameter
family of curves. The family is invariant under rescaling: if a Kirchhoff rod x(t), parametrized
by arc-length, is scaled to x̃(t) := λx(t/λ), then the curvature and torsion scale by

κ̃(t) =
1
λ
κ
( t
λ

)
, τ̃(t) =

1
λ
τ
( t
λ

)
.

From these formulas one can see that x̃(t) is still a Kirchhoff rod, satisfying equations (1)–(3)
with parameters:

ã1 =
a1
λ2

, ã2 =
a2
λ
, ã3 =

a3
λ3

, ã4 =
a4
λ2

. (34)

So—up to similarities—the Kirchhoff rods define a 3-parameter family of curves, i.e. a
3-parameter family of shapes. The front tracks of bicycling geodesics form a 2-parameter
subfamily of Kirchhoff rods (theorem 1(b)).

We consider how a bicycling geodesic (of a fixed frame length) might be rescaled by λ> 0,
λ 6= 1 (rescaling by λ=−1 is realized by (a,b) 7→ (a,−b), see lemma 3.1).

We know that the planar front tracks (b= 0), apart from the circle (a= 0), line, and Euler’s
soliton (a= 1, b= 0), come in two ‘sizes’, ‘wide’ and ‘narrow’, related by a 7→ 1/a, with the
scaling factor λ= a, see [1, section 4]. For the spatial geodesics this is not the case.

Proposition 3.9. A non-planar bicycling geodesic front track (with a fixed frame length) may
not be rescaled.

Proof. By equation (5), the Kirchhoff parameters of a geodesic front track sat-
isfy a3 = 2a2(a1 − 1). After rescaling by λ this becomes λ3ã3 = 2λã2(λ2ã1 − 1), or
ã3 = 2ã2(ã1 −λ−2). For non-planar geodesics, a2 = b and ã2 are non-zero, so that only
for λ−2 = 1 is the rescaled front track as well a bicycling geodesic.

Nevertheless, the involution a 7→ 1/a for planar geodesics (b= 0) can be extended to non-
planar geodesics b> 0, provided one acts on space curves, in addition to rescaling, by a ‘torsion
shift’. (We are indebted to David Singer for suggesting this idea.) Here are the details.

Let κ(t), τ(t) be the curvature and torsion functions of a non-circular geodesic front track
x(t) in R3, parametrized by arc length, satisfying equations (24)–(26) with parameter values
a,b ∈ R, a> 0. Let us consider the new parameters values

ã :=
1
a
, b̃ :=

b
a
,

and let κ̃, τ̃ be the curvature and torsion functions of the associated new front track.

Proposition 3.10. One has

κ̃(t) =
1
a
κ
( t
a

)
, τ̃(t) =

1
a
τ
( t
a

)
− b

a
.

Namely, the new front track is obtained from the old one by torsion shifting, τ 7→ τ − b, fol-
lowed by rescaling by λ= a.

The proof is by direct substitution in equations (24)–(26).

3.5. Monodromy

Consider a geodesic front track x(t), parametrized by arc length, with a periodic curvature
function κ(t). By proposition 3.3, this occurs for all geodesic front tracks, except lines, circles,
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and Euler’s solitons. Furthermore, denoting the period of κ2 by T, κ is T-periodic for a 6= 1
and T-antiperiodic for a= 1:

κ(t+T) = κ(t) for a 6= 1, κ(t+T) =−κ(t) for a= 1.

By equation (25), the torsion is then either T-periodic for a 6= 1, or constant for a= 1. In both
cases,

τ(t+T) = τ(t), for all t.

The next proposition follows from the above (anti-)periodicity of κ,τ and the ‘fundamental
theorem of space curves’, except for a small twist in the antiperiodic case.

Proposition 3.11 (and definition of Monodromy). Given a bicycle geodesic (x(t),y(t))
whose front track’s curvature is T-periodic or antiperiodic, there is a unique proper rigid
motion M : R3 → R3 (an orientation preserving isometry), called themonodromy of x(t), such
that

x(t+T) =M(x(t)), y(t+T) =M(y(t)), for all t ∈ R.

Proof. Let x̃(t) = x(t+T). If a 6= 1 then x(t), x̃(t) have no inflection points, with the same
curvature and torsion functions. By the ‘fundamental theorem of space curves’ [6, section 21]
(we review it in the next paragraph), there is an orientation preserving isometry M such that
x̃(t) =M(x(t)) for all t.

The uniqueness follows from the nonlinearity of x(t). The nonlinearity of x(t) also implies
that y(t) is determined by x(t) (proposition 3.7), hence x(t+T) =M(x(t)) implies that y(t+
T) =M(y(t)).

For a= 1, when κ is T-antiperiodic, we need to generalize slightly the ‘fundamental the-
orem of space curves’. Let us revise first the standard statement and proof of this theorem.

One is given two curves in R3, x(t) and x̃(t), both parametrized by arc length, without
inflection points (i.e. with non-vanishing acceleration), with Frenet–Serret frames satisfying
the Frenet–Serret equation (20), with the same curvature and torsion functions. The statement
is then that there is an orientation preserving isometry I : R3 → R3 such that x̃(t) = Ix(t) for
all t.

To prove it, one takes the isometry I that maps x(0) to x̃(0) and the Frenet–Serret frame
of the first curve at t= 0 to that of the second curve at t= 0. Then, since the Frenet–Serret
equations are invariant under isometries, one gets, by the uniqueness theorem of solutions to
ODEs, that I must take the whole Frenet–Serret frame of the first curve to that of the second.
In particular, I∗x ′(t) = x̃ ′(t), which implies Ix(t) = x̃(t) since Ix(0) = x̃(0).

Now we observe that in this argument neither the uniqueness of the Frenet–Serret frame
was used, nor any assumption about the curvature function (except smoothness). We can thus
apply it in our case of a= 1 by fixing a Frenet–Serret frameT(t),N(t),B(t) along x(t), with the
corresponding curvature and torsion functions κ(t), τ(t) (there are two choices of the frame,
we pick one of them). Along x̃(t) = x(t+T), we pick the other choice:

T̃(t) = T(t+T), Ñ(t) =−N(t+T), B̃(t) =−B(t+T).

Then we can check that this frame satisfies the Frenet–Serret equations with curvature and
torsion functions κ̃(t) =−κ(t+T) = κ(t), τ̃(t) = τ(t+T) = τ(t), so there is an isometry M
mapping x(t) to x̃(t), as needed.

Next recall that every proper rigid motion in R3 is a ‘screw motion’, the composition of
translation and rotation about a line, the rotation axis of the motion (the Chasles Theorem).
We shall now find the rotation axis of the monodromy of proposition 3.11.
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By theorem 1(c), a geodesic front track is the trajectory of a charged particle in a magnetic
fieldK, a Killing field generating a screwmotion about the line passing through x1 and parallel
to p, the rotation axis of K.

If the front track is planar then, by proposition 3.7, the geodesic is planar, and this is the
case studied in [1]. Therefore we consider non-planar front tracks in what follows.

Proposition 3.12. The monodromy M of a non-planar geodesic front track with periodic
curvature is a screw motion with axis parallel to the axis of the associated magnetic field
K. If the rotation part of M is non-trivial then its axis coincides with that of K.

Proof. We first show that the translation part of M is non-trivial. To this end, we will show
that p · x(t) is unbounded.

Using equations (31) and (32), one has

p · x′ = 1+ a2 −κ2

2
, p · v=− p · x′′

κ2 + b2
.

It follows that p · x ′ and p · v are T-periodic. Next, integrating equation (29),

(p · x)′ = (p · v)′ +(p · v)2,

over [0,T], and using the periodicity of p · v, we get that
ˆ T

0
p · x′ =

ˆ T

0
(p · v)2 > 0,

unless p · v= 0 over the whole period. This would imply, by equation (33), that κ ′ = 0, i.e. the
front track is a circle, which has been excluded. It follows that

p · x(nT) = p · x0 + n
ˆ T

0
p · x′

is unbounded, hence the translation part of M is non-trivial, along an axis parallel to the axis
of K. If the rotational part of M is trivial, then M is a pure translation along this axis of K.

Assume now that the rotational part of M is non-trivial. Let r(t) be the distance from x(t)
to the rotation axis of K. From equations (23) and (14) one has

−bT−κB= (x− x1)×p+ δp,

and taking the square norm of both sides gives

b2 +κ2 = r2|p|2 + b2

|p|2
. (35)

Hence r(t) is T-periodic. (In fact, this is a general property of Killingmagnetic field trajectories,
see [10, equation (3.2)].)

Let us project the front track x(t) onto the plane orthogonal to the axis of K, and assume
that this axis projects to the origin O. We obtain a planar curve x̄(t), invariant under a rotation
M̄, and we need to show that the centre of this rotation, say F, is the origin.

If the rotation angle is not equal to π then pick a point u= x̄(t0), not equal to F (such a point
exists else x(t) is a linear track), and consider the three non-collinear points u,M̄(u),M̄2(u).
These points are at equal distances from F and, by the T-periodicity of r(t) (see equation (35)),
at equal distances from O. Hence F=O is the circumcentre of the triangle with vertices
u,M̄(u),M̄2(u).

If the rotation angle equals π then for each point x̄(t) the points x̄(t) and M̄(x̄(t)) are sym-
metric with respect to F and are at equal distances from O. If F 6=O then it follows that the

3593



Nonlinearity 36 (2023) 3572 G Bor et al

Figure 9. Bicycle correspondence. The back track (red) is unchanged and the front
tracked is ‘flipped’ (from solid blue to dashed blue).

whole curve x̄(t) lies on the line orthogonal to FO and passing through F, hence x(t) is planar,
contradicting our original assumption (the planar geodesics have already been described in
[1], having purely translational monodromy).

3.6. Bicycle correspondence

The bicycling configuration spaceQ= Rn × Sn−1 is equippedwith a sub-Riemannian structure
whose geodesics are the bicycling geodesics considered in this article.

Identifying Q with the tangent unit sphere bundle on Rn, the Euclidean group acts natur-
ally on Q, preserving this sub-Riemannian structure, hence it acts also on the space of sub-
Riemannian geodesics on Q. Theorem 1 describes the geodesics up to this action.

Now there is an additional sub-Riemannian isometry,Φ : Q→ Q, an involution, not coming
from the said Euclidean group action, called bicycling correspondence (a.k.a. the Darboux–
Bäcklund transformation of the filament equations [14, 16]). It is defined by ‘flipping the bike
about its back wheel’:

Φ : (x,v) 7→ (x− 2v,−v).

Thus, when acting by Φ on a bicycle path, the back track is unchanged, while the front track
is ‘flipped’. See figure 9.

One can verify that Φ is a sub-Riemannian isometry, i.e. it preserves the horizontal distri-
bution D⊂ TQ and the sub-Riemannian metric on it (see lemma 3.13 below), hence it acts on
the space of bicycle geodesics.

For n= 2 this action was studied in [1] (see proposition 4.11 and figure 8). It was found
that, with one notable exception, Φ acts on the front tracks of geodesics by translations and
reflections, i.e. by Euclidean isometries. The notable exception is a bicycle geodesic with linear
front track and nonlinear back track (a tractrix), which Φ transforms into a bicycle geodesic
whose front track is the Euler soliton (and vice versa).

Here we study this action for n= 3. What we find is that, with the same exception as for
n= 2, the bicycle correspondence transforms the front tracks of bicycle geodesics by a rigid
motion I ∈ Iso(R3), a ‘square root of the monodromy’: I2 =M.

To begin with, let us verify the claim made above.

Lemma 3.13. Φ : Q→ Q is a sub-Riemannian isometry.

Proof. We first show that D is Φ-invariant. Let (x,v) ∈ Q and (x ′,v ′) ∈ D(x,v). That is,

|v|= 1, v′ = x′ − (x′ · v)v.
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Then Φ(x,v) = (x̃, ṽ), Φ∗(x ′,v ′) = (x̃ ′, ṽ ′), where

x̃= x− 2v, ṽ=−v, x̃′ = x′ − 2v′, ṽ′ =−v′.

One has then

ṽ′ − [x̃′ − (x̃′ · ṽ)ṽ] =−v′ − (x′ − 2v′)+ [(x′ − 2v′) · v]v
= v′ − [x′ − (x′ · v)v] = 0,

hence (x̃ ′, ṽ ′) ∈ D(x̃,ṽ).
Next

|x̃′|2 = |x′ − 2v′|2 = |x′|2 + 4v′ · (v′ − x′)

= |x′|2 + 4[x′ − (x′ · v)v] · [(x′ · v)v] = |x′|2,

hence Φ is a sub-Riemannian isometry.

Now consider a bicycle geodesic (x(t),v(t)) inQwhose front track’s curvature is T-periodic
or anti-periodic, and with monodromy M, as in proposition 3.11. Let

(x̃(t), ṽ(t)) = Φ(x(t),v(t)), i.e., x̃(t) = x(t)− 2v(t), ṽ(t) =−v(t).

We assume that x is not planar.

Proposition 3.14. There is a screw motion I, with the same axis as M, such that

(a) x̃(t+T/2) = I(x(t)), y(t+T/2) = I(y(t)) for all t.
(b) I2 =M.

Proof. Similarly to the proof of proposition 3.11, to show that x̃(t+T/2) and x(t) are related
by a proper isometry it is enough to show that their curvature and torsion functions coincide:

κ̃(t+T/2) = κ(t), τ̃(t+T/2) = τ(t) for all t.

Lemma 3.15. x̃(t) and x(t) have p̃= p and the same parameter values, (ã, b̃) = (a,b).

Proof. We will first show that p̃= p. From |v|= 1 we have v · v ′ = 0, hence

x̃ ′ · ṽ= (x ′ − 2v ′) · (−v) =−x ′ · v+(v · v) ′ =−x ′ · v. (36)

Then, from the first equation of (9), x ′ = p+ r, and r · v= 0, we have

p · v= (x′ − r) · v= x′ · v,and similarly, p̃ · ṽ= x̃′ · ṽ.

Thus,

p · v=−p̃ · ṽ= p̃ · v⇒ 0= (p̃−p) · v.

Differentiating,

p · x′ = p̃ · x′ ⇒ (p̃−p) · x′ = 0.

For non-planar x(t), the last equation implies p= p̃.
Next, x̃= x− 2v implies, by equation (6),

x̃′ = x′ − 2v′ =−x′ + 2(x′ · v)v,
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hence

b̃= det(p, ṽ, x̃′) = det(p,−v,−x′) = b.

Finally, |p|2 = a2 + b2 and |p̃|2 = ã2 + b̃2, hence from p̃= p and b̃= b it follows that ã= a.

Lemma 3.16. The critical points of κ2 are the points where x ′ · v= 0, and they are maxima or
minima. Bicycle correspondence maps the critical points of κ2 to those of κ̃2, interchanging
maxima and minima.

Proof. From equations (31)–(33) we get

(κ2)′ = 2κκ′ =−2G′ =−2F(2G− |p|2 − 1) = 2(x′ · v)(κ2 + b2).

Now κ2 + b2 is non-vanishing: if it does then b= 0 and κ vanishes, which cannot happen, since
planar nonlinear geodesic front tracks are non-inflectional elasticae (see proposition 3.5). Thus
critical points of κ2 are points where x ′ · v vanishes.

It follows from equation (27) that critical points of κ2 are maxima or minima, where κ2 =
(1± a)2. Now, from equation (36) we have x̃ ′ · ṽ=−x ′ · v, so (κ2) ′ and (κ̃2) ′ have opposite
signs. The critical points of κ2 are isolated, hence the derivative changes sign at a critical point,
from positive to negative at a maximum, and from negative to positive at a minimum. Similarly
for κ̃2. Since the derivatives of these functions have opposite signs, it follows that when κ2 is
at a maximum κ̃2 is at a minimum, and vice-versa, as needed.

Proof of proposition 3.14(a). By lemma 3.15, κ and κ̃ have the same period (or anti-period
for a= 1), T= T̃, and differ at most by a parameter shift. By lemma 3.16, the parameter shift
is T/2 (or any odd multiple of T/2). By equation (25), the curvature determines the torsion,
hence τ, τ̃ are also related by the same parameter shift. By the ‘fundamental theorem of space
curves’, there is a proper isometry mapping x(t) to x̃(t+T/2).

The statement y(t+T/2) = I(y(t)) now follows: (I(x(t)), I(y(t))) and (x(t+T/2),y(t+
T/2)) are geodesics with the same nonlinear front track; by proposition 3.7, they have the
same back track.

Proof of proposition 3.14(b). For any bicycle path (x(t),y(t)) we use the notation x̃(t) :=
By(t)x(t) = 2y(t)− x(t) (‘flipping of the front track x(t) with respect to the back track y(t)’).
This operation has the following obvious properties:

• x(t) := By(t)x̃(t).
• For any isometry I, (I(x(t)), I(y(t))) is also a bicycle path and I(x̃(t)) = BI(y(t))I(x(t)).
• x̃(t+ t0) = By(t+t0)x(t+ t0) for any t0 ∈ R.

Now applying these properties and the previous item, we calculate

I2(x(t)) = I(I(x(t))) = I(x̃(t+T/2)) = I(By(t+T/2)x(t+T/2))

= BI(y(t+T/2))I(x(t+T/2)) = By(t+T)x̃(t+T)

= x(t+T) =Mx(t).

Thus I2 =M since x(t) is nonlinear.
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Figure 10. Numerical evidence supporting conjecture 3.17. Bicycle correspondence of
geodesics, projected onto p⊥, is shown for various values of the parameters a,b. The
solid blue curve is x(t), the dashed curve is x̃(t), the red curve is their common back
track y(t), all drawn in the range 0⩽ t⩽ T, between two successive points of maximum
distance of x(t) to the rotation axis. The rotation angle of the monodromy is marked
by the darkened sector. Also marked is the bicycle correspondence between x(T/2) and
x̃(T/2).

3.6.1. A conjecture. Let ∆θ ∈ [0,2π) and ∆z> 0 be the rotation angle and translation of
the monodromy about its axis. Proposition 3.14 implies that the translation of I is∆z/2, but it
does not determine the rotation angle uniquely: it may be either∆θ/2 or∆θ/2+π. Based on
numerical evidence, and again assuming that the geodesic is not planar, we make the following
conjecture.

Conjecture 3.17. The rotation angle of I is ∆θ/2+π, see figure 10.

3.7. Global minimizers

Bicycle geodesics, by definition, have critical length among bicycle paths connecting two given
placements of the bike frame. In particular, some of them are theminimizing bicycle paths. We
shall not study them in detail but will only find the global minimizers, namely, the bike paths
(x(t),y(t)), t ∈ R, which are minimizers for any of their finite subsegments.
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Figure 11. A shortcut.

There are two obvious candidates: those whose front tracks x(t) are straight lines or Euler’s
solitons. Are there any other ones?

The answer is no. The reason is that, as we know, all other bicycle geodesics are quasi-
periodic: x(t+T) =M(x(t)), y(t+T) =M(y(t)) for some T > 0 and all t. Here is the detailed
argument.

Proposition 3.18. A quasi-periodic nonlinear bicycle path is not a global minimizer.

Proof. The argument is taken from [1, pages 4675–6], whose figure 11 is reproduced here
with minor changes as figure 11.

Since x(t) is nonlinear, there are two values of time, T apart, say 0 and T, so that the segment
of x(t) between x(0) and x(T) is not a line segment. It follows that L := |x(T)− x(0)|< T.

Now take the front track segment with end points at x(0), x(nT) for some positive integer
n. Its length is nT and the distance between end points is at most nL.

Let the back track be y(t). Then |y(T)− y(0)|⩽ nL+ 2. So, for n big enough, one can do
better then nT by

• Reorienting the bike at t= 0, with fixed back wheel, so it points to y(nT);
• Ride straight towards y(nT);
• Reorient the bike so its front wheel is at x(nT).

Steps 1 and 3 cost at most some fixed amount independent of n, and step 2 costs at most
nL+ 2. So total cost is at most nL+ c, for some c independent of n. This is less than nT for n
big enough.
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Appendix. Explicit formulas

One can get explicit formulas for bicycling geodesics in R3 as a special case of those for
Kirchhoff rods, as in [8, section 4], but we found it actually easier to obtain them directly.
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(The formulas of [8] require first solving complicated algebraic equations for the parameters
p,w appearing in those formulas.) We use mostly the notation of [13].

Proposition A.1. (a) The curvature of a nonlinear geodesic front track, parametrized by arc
length, is given by

κ2(t) = (1+ a)2 − 4asn2 (ωt,k) (37)

where

ω =

√
(a+ 1)2 + b2

2
, k2 =

4a
(a+ 1)2 + b2

. (38)

Here sn(u,k) is the Jacobi elliptic function with modulus k (or parameter m= k2).
(b) For a 6= 1 the period of the curvature κ is the same as the period of κ2, given by

T=
2K(k)
ω

,

where K(k) is the complete elliptic integral of the first kind.
(c) For a= 1 (constant torsion front tracks) the front track’s curvature and its period are

κ(t) = 2cn(ωt,k) , 2T=
4K(k)
ω

.

Proof. As before, set u := κ2. Then u(t) oscillates between the values (1± a)2, satisfying
equation (27), (

du
dt

)2

= (u+ b2)((1+ a)2 − u)
(
u− (1− a)2

)
.

Making the change of variables (t,u) 7→ (x,y), where

u= (1+ a)2 − 4ay2, x= ωt, ω =

√
(a+ 1)2 + b2

2
,

one finds that y(x) satisfies(
dy
dx

)2

= (1− y2)
(
1− k2y2

)
,

where

k2 =
4a

(a+ 1)2 + b2
.

This is the ODE satisfied by the Jacobi elliptic function y= sn(x,k), with y(0) = 0 and period
4K(k), where K(k) is the complete elliptic integral of the first kind with modulus k. Its square
sn2(x,k) has half that period, 2K(k). See formula 22.13.1 and table 22.4.2 of [13].

Remark A.2. Equation (37) of proposition A.1 is the same as in [8, page 614], with p2 = k2

given by equation (38) and

w2 =
(1+ a)2

(a+ 1)2 + b2
.
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The torsion of the front tracks of the last proposition is given by equation (25).
The curvature is periodic except for a= 1,b= 0, where one has k= 1 and K(1) =∞. In

this case x(t) is the Euler soliton and one has

κ= 2cn(t,1) = 2sech(t).

We next give explicit formulas for the front tracks x(t) and their monodromy in cylindrical
coordinates r,θ,z with respect to the rotation axis of K.

Proposition A.3. (a) In cylindrical coordinates r,θ,z with respect to the rotation axis of K,
the front track of a bicycling geodesic, with initial conditions z(0) = 0 and θ(0) = 0, is
given by

r(t) =
1
|p|

√
A− 4asn2(ωt,k), (39)

θ(t) =
b

2|p|

[
t+

B
ω
Π(ωt,n,k)

]
, (40)

z(t) =
1

2|p|
[
(|p|2 + 1)t− 4ωE(ωt,k)

]
(41)

where

A=

(
|p|2 + a

)2
|p|2

, B=
|p|2 − a
|p|2 + a

, |p|=
√
a2 + b2, n=

4a
A
,

and ω,k are given in equation (38).
Here E(x,k),Π(x,n,k) are the incomplete elliptic integrals of the second and third kind,
given by

E(x,k) := x− k2
ˆ x

0
sn2(s,k)ds, (42)

Π(x,n,k) :=
ˆ x

0

ds
1− nsn2(s,k)

. (43)

(b) The monodromy is given by

∆θ =
b

ω|p|
[K(k)+BΠ(n,k)] , (44)

∆z=
1

ω|p|
[
(|p|2 + 1)K(k)− 4ω2E(k)

]
, (45)

where K(k), E(k) := E(K(k),k) and Π(n,k) := Π(K(k),n,k) are the complete elliptic
integrals of the first, second, and third kinds, respectively.
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Proof. From the proof of proposition 3.12 we have equation (35),

b2 +κ2 = |p|2r2 + b2

|p|2
, (46)

from which one obtains equation (39) using equation (37) and |p|=
√
a2 + b2.

Next, from equation (21), 2|p|z ′ = 1+ a2 −κ2, and upon substitution of equation (37), we
have

|p|z ′ = a
[
2sn2(ωt,k)− 1

]
. (47)

Equation (41) follows by using formula (42).
Dotting both sides of (23) with x ′ and using the expression for K from (14), one obtains

r2|p|θ′ = b

(
1− z′

|p|

)
,

from which, upon substitution of the above formulas (47) for z
′
and (46) for r, we find

|p|θ′ = b
2

[
1+

(
2(|p|2 + a)

A
− 1

)
1

1− nsn2(ωt,k)

]
,where n :=

4a
A
.

Equation (40) now follows from formula (43).
Equations (45) and (44) now follow by evaluating equations (40) and (41) at t= T= 2K/ω,

and using E(2K(k),k) = 2E(k), Π(2K(k),n,k) = 2Π(n,k).

Remark A.4. The explicit formulas (39)–(41) are given for general Kirchhoff rods in [15],
where they appear as equations (4.19a)–(4.19c).
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